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Abstract
We calculate the number of metastable states in the generalized random
orthogonal model. The results obtained are verified by exact numerical
enumeration for small system sizes taking into account finite size effects. These
results are compared with those for a Hopfield model in order to examine the
effect of strict orthonormality of neural network patterns on the number of
metastable states.

PACS numbers: 05.20.−y, 75.10.Nr

1. Introduction

Mean field or totally connected spin glass models are among the most widely studied models
of complex systems. They are the starting point for understanding finite-dimensional spin
glasses and are also related to neural network models and complex optimization problems
[1]. Such systems exhibit an exponentially large number of pure states and dynamic glass-
like transitions. Below a certain dynamic transition temperature the dynamics becomes very
slow and the systems stay out of equilibrium on numerical or experimental time scales. An
important factor in the slow dynamics is the presence of metastable or blocked configurations.
The enumeration of the number of metastable states has been addressed by various authors
in p-spin Ising systems with Gaussian interaction matrices [2], neural network models [3, 4],
random orthogonal models (ROMs) [5] and in periodic glass models which have no quenched
disorder [6]. Recently the authors studied the statics of generalized random orthogonal models
originally introduced in [7] and established general criteria determining whether these models
exhibit continuous spin-glass-like transitions or structural glass transitions preceded by a
dynamical transition [8]. The first known examples of these sorts of phase transitions were
seen in p-spin models for p > 2 [9]. However, a number of two-spin Ising models were later
shown to have this structural glass transition [7, 8, 10, 11]. Here we shall extend the results of
[5] for the ROM to a more general ROM which can be interpreted as a Hopfield model with
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strictly orthogonal patterns in order to explore the influence of pattern orthogonality on the
number of metastable states. We also analyse the anti-ferromagnetic Hopfield model as this
class of ROMs can also be viewed as anti-ferromagnetic Hopfield models. The calculation for
the standard ferromagnetic Hopfield model was carried out in [3, 4] and we also note that the
anti-ferromagnetic Hopfield has a structure similar to the Hamiltonian arising in the analysis
of the Nash equilibria in the minority game as studied in [11]. The relative abundance of
metastable states in spin glass and neural network models gives an idea of the complexity
and frustration in these systems. In neural networks questions about metastable states arise
naturally when one considers pattern storage and retrieval. Our analytic results are backed up
by exact enumeration simulations for small system sizes. Despite small system sizes we show
that when finite size scaling is taken into account the agreement with the analytical results is
excellent.

The Hamiltonian in a fully connected generalized ROM is

H = −1

2

∑
ij

JijSiSj (1)

where the Si, 1 � i � N , are Ising spins and the interaction matrix J is statistically
invariant under the transformation J → OT JO where O ∈ O(N) (the group of orthogonal
transformations on R

N ). The matrix J can thus be written as

J = OT �O (2)

where � is a diagonal matrix with density of eigenvalues denoted by ρ(λ). If the support of
ρ(λ) is bounded on the real axis then the thermodynamic limit is well defined. It was shown
in [8] that the nature of the spin glass transition in such models depends on the behaviour of
the density of states ρ(λ) in the neighbourhood of λmax, the largest eigenvalue of �.

In this paper we shall concentrate on the model defined by

ρ(λ) = αδ(λ − 1) + (1 − α)δ(λ + 1). (3)

The matrix J in this case may be written as

Jij =
∑
µ

λµξ
µ

i ξ
µ

j =
∑

{µ:λµ=1}
ξ

µ

i ξ
µ

j −
∑

{µ:λµ=−1}
ξ

µ

i ξ
µ

j (4)

where ξµ is a random basis of orthonormal vectors on R
N . One may also write J in the

following two forms using the completeness of the ξµ:

Jij = 2
∑

{µ:λµ=1}
ξ

µ

i ξ
µ

j − δij (5)

= δij − 2
∑

{µ:λµ=−1}
ξ

µ

i ξ
µ

j . (6)

We recall that the Hopfield model with p = αN Gaussian patterns has an interaction matrix
given by

Jij =
αN∑
µ=1

ξ
µ

i ξ
µ

j . (7)

Here the variables ξ
µ

i are Gaussian with zero mean and variance ξ
µ

i ξ
µ′
j = δij δ

µµ′
/N . These

patterns are only orthonormal in the statistical sense, that is
∑

i ξ
µ

i ξ
µ′
i = δµµ′

. Up to a constant
diagonal term, the ROM we study here is from equation (5) equivalent to a ferromagnetic
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Hopfield (FH) model with αN strictly orthonormal patterns, or from equation (6) equivalent
to an anti-ferromagnetic Hopfield (AFH) model with 1 − α patterns.

The number of metastable states gives useful information about the phase space of complex
systems. The easiest metastable states to analyse are those which are single spin-flip stable, that
is to say configurations where flipping a single spin increases (and possibly leaves constant)
the energy of the system. Alternatively every spin is aligned with its local field. A metastable
state thus defined is a blocked configuration of any single spin-flip Monte Carlo dynamics.

2. Average number of metastable states

In this section we explain the calculation of the number of metastable states for generalized
ROMs. By definition the average number of metastable states is given by

NMS = TrSi

∏
i

θ


∑

j �=i

JijSiSj


. (8)

The term θ is the Heaviside function and is only nonzero if every spin Si is aligned with its
local field hi = ∑

j �=i JijSj , i.e. when hiSi > 0. The average number of metastable states at
average energy E per spin is given by

NMS(E) = TrSi


∏

i

θ


∑

j �=i

JijSiSj





 δ


EN +

1

2

∑
ij

JijSiSj


. (9)

To proceed we make the gauge transformation Oij → Oij SiSj = O′
ij , it is easy to see that O′

is also in O(N). One may, therefore, write

NMS(E) = 2N


∏

i

θ


∑

j �=i

J ′
ij





 δ


EN +

1

2

∑
ij

J ′
ij


 (10)

where J ′ = O′T �O′. Following the standard method [2] we use the identity

θ(x) =
∫ ∞

0
dx

∫ ∞

−∞

dλ

2π
exp(iλx). (11)

We thus obtain

NMS = 2N

∫
dµ

2π

dxi dλi

2π
exp


i

∑
ij

J ′
ij

(
λi +

µ

2

)
− i

∑
i

J ′
iiλi − i

∑
i

λixi + iNµE


.

(12)

To simplify the algebra we change the variables λi → λi − µ

2 . Following [5, 13] we now
consider the term

	 = exp


i

∑
ij

Jijλi


 = exp

(
i

2
Tr J (M − 2L)

)
(13)

where in vectorial notation M = λuT + uλT with ui = 1, λi = λi and Lij = (λi − µ/2)δij .
We note here that in order to eliminate the diagonal term in equation (12) the matrix L has
appeared, and this term must be properly accounted for to obtain the correct result. The
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averaging over the O(N) disorder (the Haar measure) in this problem can be carried out
by using the results of [12] for U(N) integration and adapting them to the O(N) case [7].
Recently a simple replica method was also used to derive these results [8]. The results [7, 8, 12]
give for an arbitrary symmetric matrix M and J = OT �O that

exp

[
1

2
Tr MJ

]
= exp

[
N

2
Tr G

(
M

N

)
+ nonextensive terms

]
(14)

where the overline indicates the Haar average over O and to leading order the nonextensive
terms are of order one. A compact formula for G is [8]

G(z) = maxµ

{
µz −

∫
dλ

ρ(λ)

µ − λ
− ln(z) − 1

}
. (15)

In the models of interest here G(z) is given by [8]

G(z) = 1
2

[
(1 + 4z(m + z))

1
2 + m ln

(
(1 + 4z(m + z))

1
2 + 2z + m

)
× ln

(
(1 + 4z(m + z))

1
2 + 1 + 2mz

)
− m ln(m + 1) − 1 − ln(2)

]
(ROM m = 2α − 1) (16)

G(z) = −α ln(1 − z) (FH) (17)

G(z) = α ln(1 + z) (AFH). (18)

Following the results of [7, 8, 12] one obtains

	 = exp

(
N

2
Tr G

(
i
M − 2L

N

))
. (19)

Given the form of the matrix M, the only nonzero eigenvalues of M are in the vector subspace
of R

N spanned by λ and u [5]. The two nonzero eigenvalues are

µ± = λ · u ± |λ||u|. (20)

We define the order parameters z and v by

z = 1

N

∑
i

λi (21)

v = 1

N

∑
i

λ2
i . (22)

Hence, the matrix M̃ = M/N has eigenvalues z +
√

v and z − √
v which are of order 1 and

the other N − 2 eigenvalues are of order zero. We now consider the evaluation of the term
Tr G

(
iM−2L

N

)
, Taylor expanding one has

Tr G

(
i
M − 2L

N

)
=

∞∑
n=0

in

n!
G(n)(0) Tr

(M − 2L)n

Nn
. (23)

We note that for finite values of the λi to leading order Tr Mp = C(p)Np and that
Tr Lp = D(p)N . Also for any product Pp(M,L) of the M and L containing p factors
one has that for p � 1, Tr Pp(M,L) < Np+ε when N is large for any small positive ε. The
dominant terms of this form are when Pp(M,L) = Mp. To see this, consider a product
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Pp(M,L) with at least one L occurring, we can thus write, exploiting the Cauchy–Schwartz
inequality

Tr Pp(M,L) = Tr LPp−1(M,L)

� (Tr L2)
1
2 (Tr Pp−1(M,L)2)

1
2

� Const N
1
2 × Np+ε−1

= Const Np+ε− 1
2 . (24)

Hence, for p � 2 any product containing at least one L is such that Tr Pp(M,L)/Np �
Const Nε− 1

2 → 0. The only term containing L which survives the thermodynamic limit is
present in the linear term of the Taylor expansion (23). Putting all this together for large N
yields

	 = exp

(
N

(
1

2
G(iz + i

√
v) +

1

2
G(iz − i

√
v) − i

(
z − µ

2

)
G′(0)

))
. (25)

It is easy to show that G′(0) = ∫
dλλρ(λ), and hence in the ROM G′(0) = 2α − 1, which is

zero when α = 1/2, explaining why the diagonal term mentioned above was unimportant in
the calculations of [5, 13]. It is easy to see heuristically the origin of this term, as it comes
from the term D = ∑

i J
′
iiλi in equation (12), the results of the above calculation is to show

that in the large N limit D can be written as D ≈ (
1
N

∑
i J ′

ii

)(∑
i λi

) = 1
N

Tr (J )
(∑

i λi

)
.

Introducing a delta function representation for the order parameters, the xi , λi and µ

integrals may be obtained yielding

NMS(E) = N
3
2

16π2

∫
dz dv ds dt

(
8π

t

) 1
2

exp(NA[z, v, s, t, E]) (26)

where

A[z, v, s, t, E] = 1

2
(G(z + i

√
v) + G(z − i

√
v)) − zG′(0) − sz +

vt

2
+ B

(
s√
t

)

+
2

t

(
E +

s

2
+

tz

2
+

1

2
G′(0)

)2

(27)

where

B(u) = ln

(√
2

π

∫ ∞

−u

dx exp

(
−x2

2

))
= ln

(
1 + erf

(
u√
2

))
(28)

and anticipating a real action we have made the transformation z → −iz. The average energy
E∗ of the metastable states is then given by

E∗ = − s

2
− tz

2
− 1

2
G′(0) (29)

at the saddle point of the reduced action

A[z, v, s, t] = 1

2
(G(z + i

√
v) + G(z − i

√
v)) − zG′(0) − sz +

vt

2
+ B

(
s√
t

)
. (30)

The total average number of metastable states is given by

NMS = N

∫
dENMS(E) (31)

which gives

NMS = N2

8π2

∫
dz dv ds dt exp(NA[z, v, s, t]). (32)
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Figure 1. The entropy of metastable states per spin for (i) ROM (full line) (ii) FH with p = αN

patterns (dotted line) and (iii) AFH with p = (1 − α)N patterns (dashed line).

We have, therefore, to leading order

S∗ = ln(NMS)

N
= extrz,v,s,tA[z, v, s, t] − ln(2)

N
− 1

2

ln(detH)

N
+ O(1/N) (33)

where H is the Hessian of A at the saddle point and the term O(1/N) comes from the
nonextensive terms arising in the O(N) disorder averaging . The fact that the leading order
correction is O(1/N) means that S∗ can be evaluated by exact enumeration for quite small
system sizes when the above finite size scaling is taken into account.

The extremization of this action (with four-order parameters) seems quite complicated
and has a similar structure to the saddle point encountered in the calculation of the average
number of metastable states in the periodic glass model studied in [6] the Hopfield model
[4, 3] and the ROM at α = 1/2 [5, 13]. The saddle point equations giving s and t are

s = 1

2
G′(z + i

√
v) +

1

2
G′(z − i

√
v) − G′(0) (34)

t = − i

2
√

v
(G′(z + i

√
v) − G′(z − i

√
v)). (35)

The remaining saddle point equations must be solved numerically. Given the definition of the
order parameter v we look for solutions to the saddle point equations with positive v. We
shall see that the solutions we find with this prescription agree perfectly with the results of
exact enumeration of small systems where we can calculate both S∗ the entropy of metastable
states, and E∗ the average energy of these states.

The calculated values of S∗(α) for the ROM and ferromagnetic Hopfield models along
with S∗(1 − α) for the anti-ferromagnetic Hopfield model are shown in figure 1. As the ROM
can be regarded as an anti-ferromagnetic Hopfield model with 1 − α orthonormal patterns or
a ferromagnetic Hopfield model with α orthonormal patterns, this comparison is natural. In
the limit α → 1 we see in figure 1 that S∗

ROM(α) → S∗
AFH(1 − α) and that in these two cases

S∗ → ln(2). However, S∗
FH ≈ 0.131 486. Hence, for the ROM, as α → 1 there is a small
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fraction (1 − α) of repulsive patterns to be avoided to minimize the energy and the fact that
they are strictly orthonormal or statistically orthonormal does not change the behaviour of S∗

drastically with respect to the AFH. This result can be seen analytically as follows. Writing
α′ = 1 − α, then near α = 1, for the ROM

G(z) = z − α′ ln(1 + 2z) + O(α′2). (36)

In the metastable state calculations here, the term linear in z of G(z) disappears from the
calculation. The remaining term is just (up to a rescaling of the energy that will not affect the
number of metastable states) the term one has for the AFH with α′ patterns. Thus, explaining
the convergence of S∗(α) for the ROM with S∗(1 − α) for the AFH near α = 1. One may
further show that in these two cases as α → 1, one has

S∗(α) ≈ ln(2) − α′

2

[
ln

(
2

eα′ ln

(
1

α′

))
+

1

ln
(

1
α′

)
]

. (37)

This asymptotic formula agrees well with the numerically calculated value up to α′ = 0.1.
In the limit α → 0 we also see that S∗

ROM(0+) = 0 and S∗
FH(0+) = 0 but S∗

AFH(1) ≈
0.306 983. However, S∗

ROM and S∗
FH remain different as α → 0. Hence, when the attractive

patterns are strictly orthonormal then there are more metastable states than in the case when the
patterns are only statistically orthonormal. In the FH model in the limit α → 0 it was shown
[3] that S∗(α) ≈ 1

α
[ln(2/πα) − 1]. In the same limit in the ROM the asymptotic behaviour is

rather singular and we have not yet found the corresponding asymptotic behaviour.
To summarize, we have the inequality S∗

FH(α) � S∗
ROM(α) � S∗

AFH(1 − α). Hence, in
the case of ferromagnetic Hopfield models strict pattern orthonormality increases the number
of metastable states but in the anti-ferromagnetic Hopfield model it decreases the number of
metastable states. Let us note here that at a fixed pattern number the ROM and AFH have more
metastable states than the FH. This is in accordance with the observation that the ROM and
AFH have a structural glass transition whereas the FH has a continuous spin glass transition.

3. Numerical simulations

To verify our results we have carried out exact numerical enumeration of NMS on small systems
of size between 10 and 30 spins. Using the finite size scaling predicted by equation (33) we
find excellent agreement between the calculations presented here even for the relatively small
system sizes examined.

Measured in the simulations were NMS, ln(NMS) and E∗ the average value of the energy
per spin of the metastable states. The numerical results confirm to high precision that
ln(NMS) = ln(NMS), thus confirming that the total entropy on metastable states is self-
averaging and justifying our annealed calculation. Averaging was carried out up to 235−N

samples for the systems of size N, with N between 10 and 30. Both the annealed total entropy
of metastable states NS∗ = ln(NMS) and the quenched total entropy NS∗

q ln(NMS) were plotted
as a function of N and were found to be very close to straight lines for systems of size greater
than 10. The value of S∗ was then determined by a linear fit. The average energy per spin over
all metastable states and samples, corresponding to the annealed calculations carried out here,

E∗ =
∫

dE ENMS(E)∫
dE NMS(E)

(38)

was calculated from the simulations of the systems of size 20 (to have good statistics). As an
additional check the quenched average energy per spin of the metastable states
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Figure 2. The annealed (S∗) (circles) and quenched (S∗
q ) (squares) entropy of metastable states for

the anti-ferromagnetic Hopfield model measured from the simulations along with the calculated
value (solid line). Also shown are the average values of the energy per spin of the metastable states
measured by the simulations (diamonds) along with the calculated value E∗.

E∗
q =

(∫
dE ENMS(E)∫
dE NMS(E)

)
(39)

was also calculated. We note that if the annealed approximation is exact then we should find
E∗ = E∗

q .

The results for S∗ estimated from the annealed average ln(NMS) and the quenched average
ln(NMS) in the AFH are shown in figure 2 plotted against the calculated value. We see again
that the agreement is excellent. The difference between the annealed and quenched averages
are very small, showing the validity of the annealed approximation. Note that by Jensen’s
inequality the annealed average should be greater than the quenched one. Similarly, the
numerically estimated values for E∗ and E∗

q are within the error bars of the simulation and
also in excellent agreement with the calculated value of E∗.

For the ROM, in each system of size N,Nα eigenvectors were chosen to have
eigenvalue 1 and the remaining to have eigenvalue −1. The extrapolated values of S∗ and S∗

q

are shown in figure 3 along with the energy E∗
q obtained from samples of size N = 30. Again,

we see that the agreement with the analytical calculations is excellent and that the extrapolated
values of S∗ and S∗

q coincide.
Via the exact numerical enumeration were also computed the annealed NS∗(E) =

ln(NMS(E)) and quenched NS∗
q (E) = ln(NMS(E)) entropy of the metastable states of energy

E. Numerically, we computed

NMS(Ei) = 1

No of samples

No of samples∑
i=1

NMS(Ei,Ei + �E)

�E
(40)

and

ln(NMS(Ei)) = 1

No of samples

No of samples∑
i=1

ln

(
NMS(Ei,Ei + �E)

�E

)
(41)
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Figure 3. As in figure 2, but for the generalized ROM. For the average energy, the errors were
computed and are always less than the size of the symbols.

–0.5 –0.45 –0.4 –0.35 –0.3
E

0

0.1

0.2

0.3

0.4

S
* q 

an
d 

S
*

Figure 4. The annealed (S∗(E)) (circles, solid line) and quenched (S∗
q (E)) (squares, dotted line)

entropy of metastable states of energy E per spin for the ROM.

where �E = 0.005 is the chosen bin size of the discrete energy values Ei . To avoid
divergences when taking the logarithm, we set ln(NMS(E)) = 0 when NMS(E) was zero
in a given sample. This procedure should be unimportant in the thermodynamic limit as it
concerns a nonextensive number of metastable states. The results for the ROM with α = 1/2
are shown in figure 4 for an averaging over 32 samples of size 30. We clearly see, for a
substantial region around the most probable energy, the annealed and quenched entropies
coincide, i.e. S∗(E) = S∗

q (E). For values of the entropy smaller than 0.3, the two curves
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depart from each other, with S∗
q always smaller than S∗ as it should be. However, the small

number of metastable states considered for these energies and size makes it impossible to draw
any conclusion about the thermodynamic limit. In particular, one would expect that the two
entropies should collapse for all energies above some energy threshold E0 below E∗. This is
not the case for our data indicating strong finite size effects at the edges of the energy spectrum
of the metastable states, as one should expect.

4. Conclusions

We have shown that in the class of ROMs considered here, there is always an exponentially
large number of metastable states which increases as a function of α. The ROM can be
viewed as a ferromagnetic Hopfield model with α strictly orthonormal patterns or an anti-
ferromagnetic Hopfield model with 1 − α strictly orthonormal patterns. Comparison with
the corresponding Hopfield models shows that the orthonormality of the patterns increases
the number of metastable states in the ferromagnetic case but decreases this number in the
anti-ferromagnetic case. If one considers a ferromagnetic Hopfield model with all patterns
parallel then there are clearly only two metastable states (all spins aligned or anti-aligned with
this pattern). In the anti-ferromagnetic Hopfield model if all the patterns are parallel then there
are more metastable states as it is easier to be orthogonal to a single pattern than several. This
reasoning in these extreme cases is compatible with the results found here.

Finally the numerical simulations carried out here, though for small system sizes, show
remarkable agreement with the analytic calculations. This is extremely important as the
structure of the saddle point equations is so complicated that one needs some confirmation
that one has found the good saddle point. Furthermore, it suggests that rather than doing
Monte Carlo simulations for systems exhibiting a dynamical transition, where even small size
systems will stay out of equilibrium, it may be more useful to carry out exact enumeration on
these small system sizes to calculate thermodynamic quantities.
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